Indian Statistical Institute, Bangalore B. Math II, First Semester, 2024-25 Back Paper Examination Introduction to Statistical Inference Maximum Score 100

Duration: 3 Hours

- 1. (10) Let X_1, \dots, X_n be iid Poisson(λ) random variables. State with reason, which of the following is/are sufficient statistics for the parameter λ .
 - (a) $\sum_{i=1}^{n} X_i$
 - (b) $n \sum_{i=1}^{n} X_i$
 - (c) $\sum_{i=1}^{n} X_i n\lambda$
 - (d) X_1

26.12.24

- (e) $(X_1, \sum_{i=2}^n X_i)$
- 2. (25) Let ϕ_1 and ϕ_2 be bivariate normal densities with means zero, variances 1 and correlation coefficients 0 and 1/2 respectively. Suppose (X, Y) has the bivariate density $\frac{1}{2}(\phi_1 + \phi_2)$. Find the pdfs of X, Y and X + Y. Conclude that (X, Y) is not bivariate normal but the marginals are univariate normal.
- 3. (3+10+10+7) Let X_i, \dots, X_n be iid Geometric(p) random variables, that is, the pmf is

$$f(x) = (1-p)^{x-1} p$$
 for $x = 1, 2, 3, \cdots$

Let $T = \sum_{i=1}^{n} X_i$ and $\theta = p(1-p)$

- (a) Find an unbiased estimator of θ based on X_1 .
- (b) Use Rao-Blackwell theorem to find an unbiased estimator $\hat{\theta}_U$ of θ based on T, that has lower variance than the estimator in part(a).
- (c) Find the MLE $\hat{\theta}_{MLE}$ of θ
- (d) Show that \bar{X} is consistent for 1/p. Hence conclude that both $\hat{\theta}_U$ and $\hat{\theta}_{MLE}$ are consistent for θ .
- 4. (12+3) Let X_1, \dots, X_n be iid from Exponential distribution with rate λ , that is, with pdf.

$$f(x) = \lambda \exp\{-\lambda x\}, \quad x > 0$$

Let $\lambda_0 > 0$ be a fixed number.

- (a) Find the form of the generalized likelihood ratio test for testing $H_0: \lambda = \lambda_0$ vs $H_1: \lambda \neq \lambda_0$ at level α . Express the rejection region in terms of $\bar{X}, n, \alpha, \lambda_0$ and the Gamma distribution.
- (b) Can any test of this form be uniformly most powerful? Justify your answer.

5. (8+10+2) Let X be a single observation from the $\beta(\theta, 1)$ distribution.

- (a) Let $Y = -(\log X)^{-1}$. Evaluate the confidence coefficient of the set (y/2, y).
- (b) Find a pivotal quantity and use it to set up a confidence interval having the same confidence coefficient as the interval in part (a).
- (c) Compare the two confidence intervals.